If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-36b=0
a = 1; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·1·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*1}=\frac{0}{2} =0 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*1}=\frac{72}{2} =36 $
| 15+1/n=9 | | 8p=7+9p | | 26+x/13=14 | | -4u-9=-3u | | -(16-5x)= | | F(x)=800(1.09)^3^x | | 4(x-5)+15=3x+5x+1 | | s−14–2=–3 | | 5(-2x-3)=85 | | 13v=−4 | | X/4(x-167)=48 | | 12=3n−6 | | 1/3(x+4)=1/2(x-5) | | F(x)=800(1.09)3^3 | | k/7+3-2(k)=-3 | | 12q=18+14q | | 1/10x=29 | | 33x+6=127 | | 4/5x-6=6 | | 3n-18=1/4n-4 | | (X+5)=6x=(2x+4) | | b4+ 6=9 | | 4/9x+2=-2 | | 0.06x=x | | 4x-3x5+4=3x-x+3 | | 7x-5(7x-16)=-116 | | (x+16)+(25)=180 | | 2x-3-8x=14+2x-1. | | x+x+x/2=48 | | 8x-25=14 | | 2(m+3)-6=-4(m+3)+6 | | 12x+10=14x+54. |